Ventilation is the intentional introduction of outside air into a space.[1] Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used for purposes of thermal comfort or dehumidification when the introduction of outside air will help to achieve desired indoor psychrometric conditions.
The intentional introduction of outside air can be categorized as either mechanical ventilation, or natural ventilation.[2] Mechanical ventilation uses fans to drive the flow of outside air into a building. This may be accomplished by pressurization (in the case of positively pressurized buildings), or by depressurization (in the case of exhaust ventilation systems). Many mechanically ventilated buildings use a combination of both, with the ventilation being integrated into the HVAC system. Natural ventilation is the intentional passive flow of outside air into a building through planned openings (such as louvers, doors, and windows). Natural ventilation does not require mechanical systems to move outside air, it relies entirely on passive physical phenomena, such as wind pressure, or the stack effect. Mixed mode ventilation systems use both mechanical and natural processes. The mechanical and natural components may be used in conjunction with each other or separately at different times of day or season of the year.[3] Since the natural component can be affected by unpredictable environmental conditions it may not always provide an appropriate amount of ventilation. In this case, mechanical systems may be used to supplement or to regulate the naturally driven flow.
Outdoor air can also enter a building by infiltration - the uncontrolled flow of air from outdoors to indoors through leaks (unplanned openings) in a building envelope. In buildings that make no intentional design for mechanical or natural ventilation, circumstantial infiltration has been referred to as adventitious ventilation.[4] In exhaust ventilated buildings, the intended flow of outside air may enter through planned inlets, but it will also enter through unplanned leaks in the building envelope. Generally, all outside air that crosses the building envelope through leaks is referred to as infiltration, whether it is driven by mechanical systems or natural mechanisms like wind.
In many instances, ventilation for indoor air quality is simultaneously beneficial for the control of thermal comfort. At these times, it can be useful to increase the rate of ventilation beyond the minimum required for indoor air quality. Two examples include air-side economizer strategies and ventilation pre-cooling. In other instances, ventilation for indoor air quality contributes to the need for - and energy use by - mechanical heating and cooling equipment. It hot and humid climates dehumidification of ventilation air can be a particularly energy intensive process.
In many scenarios, heat recovery ventilation can reduce energy use for heating and cooling by facilitating sensible heat exchange between exhaust air and incoming ventilation air. Energy recovery ventilation transfers moisture in addition to sensible heat. However, heat recovery can increase the fan power required for ventilation, and may increase energy use for heating and cooling for periods when ventilation would be beneficial for the control of indoor thermal comfort.[5]
The design of buildings that promote occupant health and well being requires clear understanding of the ways that ventilation airflow interacts with, dilutes, displaces or introduces pollutants within the occupied space. Although ventilation is an integral component to maintaining good indoor air quality, it may not be satisfactory alone.[6] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary. In kitchen ventilation systems, or for laboratory fume hoods, the design of effective effluent capture can be more important than the bulk amount of ventilation in a space. More generally, the way that an air distribution system causes ventilation to flow into and out of a space impacts the ability for a particular ventilation rate to remove internally generated pollutants. The ability for a system to remove pollution is described as its "ventilation effectiveness". However, the overall impacts of ventilation on indoor air quality can depend on more complex factors such as the sources of pollution, and the ways that activities and airflow interact to affect occupant exposure.
Ventilation should not be confused with air motion induced by ceiling fans or other devices. Air motion influences thermal comfort, it can decrease thermal stratification, and it may cause pollutant dilution by way of mixing, but it does not introduce outside air and therefore does not classify as ventilation.
Ventilation should be considered for its relationship to "venting" for appliances and combustion equipment such as water heaters, furnaces, boilers, and wood stoves. Most importantly, the design of building ventilation must be careful to avoid the backdraft of combustion products from "naturally vented" appliances into the occupied space. This issue is of greater importance in new buildings with more air tight envelopes. To avoid the hazard, many modern combustion appliances utilize "direct venting" which draws combustion air directly from outdoors, instead of from the indoor environment.

0 comments: